
Motivic Aspects of Mixed Hodge structures

Aaron Wild∗

We outline the proof that the Hodge-characteristic (when defined via graded pieces
of a mixed Hodge structure) is a ring homomorphism K0(Var)! K0(hs), as in [Pet10,
Lec.6]. Along the way, we outline some problems relating to triangulated structures on
the category of complexes with mixed Hodge structures. These notes were prepared
for the Gradutate Seminar on Motivic Hodge theory, which took place in Bonn during
the summer semester 2023. I would like to thank both Prof. Daniel Huybrechts and
Marco Volpe for helping me prepare for this talk. Some claims and questions I could
not resolved are marked in pink.
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1 Recap and overview

1.1. Recall our setup: Let Var be the category of complex algebraic varieties. We
have the Grothendieck group of varities K0(Var) := Z[Var]/J , where J is the ideal
generated by the scissor relations

[X] − [Y ] − [X \ Y ] = 0 (1)

for any inclusion Y ⊆ X of closed subvarieties. We already know that there exists a
unique ring homomorphism

χHdg : K0(Var) ! K0(hs) (2)

called the Hodge characteristic, that agrees with the topological Euler characteristic
after applying the natural map K0(hs) ! K0(Vec), and that satisfies

χHdg(X) =
∑

(−1)k Hk(X)
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Recap and overview

whenever X is smooth projective. One goal is now to give an explicit description
of χHdg(X) for arbitrary X. This will be done using the language of mixed Hodge
structures:

Definition 1.1a — Let H be a Q-module. A mixed Hodge structure on H is a tripel
(H, W, F ) where W is an increasing fitration on H and F is a decreasing filtration on
HC, such that F induces a pure Hodge structure of weight k on GrW

k := Wk/Wk−1.
The filtration W is called the weight filtration, and the filtration F is called the
Hodge filtration. Morphisms of mixed Hodge structures are Q-linear maps preserving
both filtrations. We denote the category of mixed Hodge structures by mhs.

We have already seen that mhs is abelian, and that K0(mhs) = K0(hs) holds
canonically. At the end of the previous talk, we established:

Theorem 1.1b ([Pet10, Thm.5.2.6.]) — Let U be a complex algebraic variety, and
k > 0 an integer. Then there exists a mixed Hodge structure on Hk(U).

This is part of proving Deligne’s theorem on mixed Hodge structures on cohomol-
ogy of pairs (Thm.2.2.5. in [Pet10]).

With all this at hand, we can now state the first main theorem of this talk:

Theorem 1.2. The map χHdg from (2) is given as

χHdg : K0(Var) ! K0(mhs) = K0(hs), U 7!
∑

k

[GrW
k Hk

c (U)],

where W is the weight filtration on Hk
c (U).

We sketch the proof now, which relies on two main statements that are shown in
the following two sections:

Proof. To avoid confusion, let’s write χ̃ for the map χ̃ : U 7! [GrW
k Hk

c (U)] (defined
on the level of varieties). We are going to show two things:

(i) The map χ̃ respects the scissor relations (1), and thus descends to a map
χ̃ : K0(Var) ! K0(mhs).

(ii) The map χ̃ is a ring homomorphism.

Then the uniqueness of the Hodge characteristic, together with the fact that

χ̃|K0(Varsm,proj) = χHdg

implies the theoren (by Bittner’s theorem). �
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Scissor relations for the Hodge characteristic

2 Scissor relations for the Hodge characteristic

The mixed cone

2.1. Recall from previous talks: For any topological space X and F a sheaf on X,
we have the Godement resolution C(F). If f : X ! Y is a continous map and G• a
complex of sheaf on Y , then f induces a morphism of complexes

f ] : G• ! Rf∗f−1G•

Specializing to the constant local system, we have a map f ] : Y Q ! Rf∗XQ and
isomorphisms

RΓq(Y, cone(f ])) ∼−! H̃q+1(cone(f),Q),

where the right-hand side is the reduced cohomology of the topological space cone(f).

Lemma 2.2. Let i : V ↪! U be the inclusion of a closed set, with induced map
i] : UQ ! i∗V Q. Then Hk(U, V ) = RΓk−1(U, cone(i])).

2.3. Recall the somewhat lengthy definition of a mixed Hodge complex: It consists
of a tupel ((K, W ), (KC, W, F ), β), where

• (K, W ) is a bounded below filtered complex of Q-vector spaces,
• (KC, W, F ) is a bi-filtered complex of vector spaces, and

β : (K, W ) ! (KC, W ) = ResQ⊆C((KC, W ))

is a “pseudo-morphism” in the category of bounded below filtered Q-complexes1,
that moreover induces a “pseudo-isomorphism”

β ⊗ id : (K, W ) ⊗ C
∼−! (KC, W )

of bounded-below filtered C-complexes;

these are required to satisfy that the triple

GrW
m K := (GrW

m K, (GrW
m KC, F ), GrW

m β)

is a Q-Hodge complex of weight m. We note that it is a non-trivial result that the
cohomology groups of a mixed Hodge complex cary a mixed Hodge structure (this
relies on Deligne’s “two filtration lemma”, c.f. [Del74, 7.2]).

Definition 2.4. Let ((K, W ), (KC, W, F ), β) and ((K ′, W ′), (K ′
C

, W ′, F ′), β′) be
complex of mixed Hodge structures. A morphism of mixed Hodge complexes consists
of the following data:

1In [Del74, (8.1.10)], the morphism β is only required on the level of filtered C-complexes
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Scissor relations for the Hodge characteristic

(i) A morphism u : (K, W ) ! (K ′, W ′) in D+F (A)
(ii) A morphism uC : (KC, W, F ) ! (K ′

C
, W ′, F ′) in D+F 2(C)

subject to the coherence condition that the diagram

K ⊗ C K ′ ⊗ C

KC K ′
C

u⊗id

β⊗id ∼ β′⊗id∼

uC

(3)

commutes in D+F (C) (with respect to W ). This leads to the category CMHS of
complexes of mixed Hodge structures. Note that CMHS is not just the derived
category of the category of chain complexes over the abelian category mhs!

2.5. That we require the commutativity of (3) only in D+F (C) is somewhat of a
problem, because it means that on representatives, the diagram is only homotopy-
commutative. This makes it difficult (or rather impossible) to define a good triangu-
lated structure, and we already have this problem without any filtrations:2 Consider
the category C consisting of triples (K, KC, β), where K ∈ D(Q), KC ∈ D(C), and
β : K ! KC is a morphism in D(Q) such that β ⊗ idC : K ⊗ C ! KC is an isomor-
phism in D(C); a morphism between (K, KC, β) and (K ′, K ′

C
, β′) are pairs (u, uC),

where u : K ! K ′ is a morphism in D(Q), uC : KC ! K ′
C

is a morphism in D(C)
and the diagram

K ⊗ C K ′ ⊗ C

KC K ′
C

u⊗id

β⊗id ∼ ∼ β′⊗id

uC

is supposed to be commutative in D(C), so again only up to an (unspecified) ho-
motopy. To define the cone of u, we would like to consider the ordinary cones
(cone(u), cone(uC)) ∈ D(Q) × D(C) , and find a “canonical” comparison morphism
γ : cone(u) ! cone(uC) that is compatible with β, β′ in the sense that the diagram

K ⊗ C K ′ ⊗ C cone(u) ⊗ C

KC K ′
C

cone(uC)

u⊗id

β⊗id β′⊗id γ⊗id

uC

commutes in D(C). While it is possible to find such a morphism in D(C) (which is an
isomorphism by a form of the 3-by-3-lemma), it is only well-defined up to homotopy,
and is unique only if the homotopy witnessing the commutativity of the left-hand
side is fixed.

2I think this also explains problems with Defintion 3.2 in [Beı̆86].
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Scissor relations for the Hodge characteristic

2.6. The following construction is possible: Let u : (K, W, F ) ! (K ′, W ′, F ′) be a
morphism of bifiltered complexes over some ring R. Then the mixed cone of u is
defined as the usual complex cone(u), i.e. the complex K[1] ⊕ K ′, with differentials

dn :=
(

−dn+1 0
−un+1 dn

)
: Kn+1 ⊕ K ′,n ! Kn+2 ⊕ K ′,n+1,

together with filtrations W [1] ⊕ W ′, F ⊕ F ′.

Lemma 2.6a — Let (K, W ) be a complex of R-modules with an increasing filtration
W , and let (K[1], W [1]) be the shifted complex with (W [1]nK)[1]. Then

GrW
n (K[1], W [1]) = (GrW

n−1 K, W )[1].

If (K, W, F ) is a complex of mixed Hodge structures over A, then

Hi(GrW
n (K[1], W [1]), F ) = Hi+1(GrW

n−1 K, F )

is a Hodge-structure of weight n + i.

More precisely, we have

Lemma 2.6b — Let
K K ′

L L′

u

α α′

v

be a diagram in Ch(A) for some ring A, and let h be a homotopy making the diagram
homotopy commutative. Then the morphism

γ :=
(

α 0
h α′

)
: cone(u) ! cone(v)

renders the diagram
K K ′ cone(u)

L L′ cone(v)

u

α α′ γ

v

homotopy-commutative. If α, α′ are (quasi-)isomorphisms, then so is γ.

In particular, if (K, W, F ) and (K ′, W ′, F ′) are complexes of mixed Hodge struc-
tures, then so is cone(u).
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Scissor relations for the Hodge characteristic

2.7. Both good compactifications and semi-simplicial hyperresolutions are functorial
in the sense that any morphism f : U ! V of complex varieties can be completed to
a diagram

U Y Y•

V Z Z•

f f

εY

f•
εZ

,

where U ↪! Y and V ↪! Z are smooth compactifications, and Y• ! Y , Z• ! Z are
semi-simplicial resolutions (c.f. [PS08, Cor.5.9]). Note that this is not the same as
claiming that resolutions of singularities are functorial, which is in general false for
non-smooth morphisms (c.f. [Kol05, Ex.3.2]).

Now the cruicial thing to note is that the “Hodge complex” is preserved under
pullback, i.e. that we have

f
∗
• Hdg•(Z• log E•) ∼= Hdg•(Y• log D•)

for U ↪! V the inclusion of a closed subset. Now we can use that logarithmic Hodge
complexes are complexes of free modules, so in particular, we can calculate their
pushforward without having to derive further, and that the (−)∗ ` (−)∗-adjunction
extends to bifiltered complexes, so we get a natural map of complexes of sheaves of
mixed Hodge structures

f ] : εZ,∗ Hdg•(Z• log E•) −! f∗εY,∗ Hdg•(Y• log D•),

which can be further rigidified in the sense that the all comparison isomorphism are
not only quasi-isomorphisms but admit a homotopy-inverse (since this is possible
for all quasi-isomorphisms of bounded Q-complexes).3 We can then view this
morphism as a morphism in a triangulated subcategory of DF (Q) × DF 2(C), which
is triangulated via the cone from 2.6. The “natural” cohomology functors on this
triangulated category are indeed compatible with the Hodge-structures (and also
induce morphisms of Hodge-structures), so the distinguished triangle

εZ,∗ Hdg•(Z• log E•) f∗εY,∗ Hdg•(Y• log D•) cone(f ])f]

3This is a delicate issue, that I don’t feel super confident about: Already for j : U ↪! X the inclusion
of a smooth variety U into a smooth-projective variety X, we have a “zig-zag” of comparison
quasi-isomorphisms

(Rj∗QU , τ) ⊗Q C
∼! (Rj∗CU , τ) ∼! (Rj∗Ω•

U , τ) ∼ (j∗Ω•
U , τ) ∼ (Ω•

X(log D), τ) ∼! (Ω•
X(log D), W ),

where W is the weight filtration on Ω•
X log(D) and D := X \ U is a normal crossing divisor. So

in particular, a “canonical” comparison isomorphism

(Rj∗QU , τ) ∼−! (Ω•
X(log D), W )

only exists in D+F (C). However, since we are considering complexes of free modules over a field,
we can always find (non-canonical?) homotopy-inverses, which should be enough (since we are
only interested in cohomology in the end).
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Künneth formula for mixed Hodge structures

yields to a long-exact sequence of mixed Hodge-structures.

Proposition 2.8. Let X be an algebraic variety, and Y ⊆ X a closed subvariety.
Then

χHdg(X) = χHdg(Y ) + χHdg(X \ Y ).

Proof. Let X be a compactification of X, with T = X \ X, and Y ⊆ X the closure
of Y . Then Hk

c (X \ Y ) = Hk(X, Y ∩ T ), and the associated long-exact sequence of
mixed Hodge-structures reads as

. . . Hk
c (X \ Y ) Hk

c (X) Hk
c (Y ) Hk+1

c (X \ Y ) . . .

�

Remark 2.9. In [ElZe83], El Zein gives a different construction of the mixed
Hodge structures on the cohomology of varieties. I didn’t have time to read this
paper carefully, but there’s also a discussion of the (non-)functoriality of the cone of
complexes of mixed Hodge structures and their triangulated structure, in particular
in 3.1.

3 Künneth formula for mixed Hodge structures

Proposition 3.1. Let U, V be complex algebraic varieties. Then the topological
Künneth isomorphism⊕

p+q=k

Hp(U,Q) ⊗ Hq(V,Q) ∼−! Hk(U × V,Q)

is an isomorphism of mixed Hodge structures.

By strictness of morphism of mixed Hodge structures4, it suffices to see that the
Künneth map is a morphism of Hodge structures.

Recollection from previous talks

3.2. Recall the notion of the cube category �: It has objects given by finite subsets
of N, and for I, J ⊆ N, we have

Hom�(I, J) =
{

{∗}, if I ⊆ J ;
∅, otherwise.

4In other words, the forgetful functor mhs! VecQ is conservative
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Künneth formula for mixed Hodge structures

More important for us is the n-truncated cube category �n for some n > 1. It is the
category induced by the lattice of subsets of {0, . . . , n − 1}. So for example, this is
�2:

{0}

∅ {0, 1}

{1}

Now let C be any category. A n-truncated cubical object in C is a functor �op
n ! C.

We denote the category of n-truncated cubical objects of C by Cuben(C). Similarly,
for A ⊆ N any finite subset of N, we have the notion of the A-cubical category �A,
and the notion of A-cubical objects in C, which we denote by CubeA(C). We saw
last time that we can define, for any C with finite coproducts, a functor

Cuben+1(C) ! SeSimp+
n (C),

where SeSimp+
n (C) denotes the category of n-truncated augmented semi-simplicial

objects in C.5 This extends to a functor Cube(C) ! SeSimp+(C) for untruncated
objects.

3.3. We then introduced the notion of a semi-simplicial resolution:

Definition 3.3a — Let ε : X• ! X be an augmented semi-simplicial complex. We
say that ε is of cohomological descent if the natural map

ε] : QX −! QX•

is an isomorphism.6

Definition 3.3b — Let X be a variety and D ⊆ X a closed subvariety. A semi-
simplicial resolution of X is an augmented semi-simplicial variety ε : X• ! X, such
that all the maps Xk ! X are proper, Xk is smooth for all k, ε is of cohomological
descent and the inverse image of D on each irreducible component Xi

k is either all of
Xi

k, empty, or a divisor with simple normal crossings on Xi
k.

Definition 3.3c — Let XI be a cubical variety. We say that it is a cubical hyperres-
olution if its associated semi-simplicial variety is a semi-simplicial resolution.

Theorem 3.3d — Let X be a variety of dimension n, and T ⊆ X a Zariski closed
subset with dense complement. Then there exists a (n + 1)-truncated cubical hyper-
resolution (XI) of (X, T ).

5These are functors 4+,op
n , where 4n is the n-truncated semi-simplicial category, i.e. the wide

(containing all objects) suncategory of ∆n containing only the monorphisms, and the (−)+ stands
for augmentation, i.e, we have an additional object ∅ ∈ 4+

n with a unique morphism ∅! [0].
6Two documents on this topic that look helpful, but that I couldn’t read before the talk, are these

expository notes of Illusie [Ill09] and these more technical notes by B. Conrad [Con].
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Künneth formula for mixed Hodge structures

We have the following crterion for an augmentation map to be of cohomological
descent:

Proposition 3.3e — Let ε : X• ! X be an augmented semi-simplicial complex variety.
If the geometric realization |ε| : |X•| ! |X| is proper and has contractible fibers, then
ε is of cohomological descent.

TODO 1. Can the cubical hyperresolution of a variety X always be choosen in such
a way that the fibers in the geometric realization of the associated semi-simplicial
variety are contractible?

Compatibility with products

TODO 2. In the book ([PS08, p.134f]), they use some vague barycentric subdivision
argument to argue that for varieties X and Y with semi-simplicial resolutions X• ! X
and Y• ! Y the relation |X• × Y•| ∼= |X•| × |Y•| holds. They then wan to use this
to see that X• × Y• ! X × Y is still of cohomological descent. However, they
don’t say why this should follow. My guess is that they want to use the criterion
Proposition 3.3e, but this would need that every semi-simplicial resolution has
contractible fibers. I am not sure if this holds. But I also don’t think that this is
necessary: That the geometric realization functor commmutes with finite products is
true as long as the target category is suitably chosen (we need a convinient category
of topological spaces). This is the main reason why I outlined the definitions from
previous talks, because I could not get my head around what happens in [PS08] at
all.

Definition 3.4. Let X• be an augmentend semi-simplicial variety. We define its
derived category as

D(X•,Q) := lim
∆inj

D(Xn,Q),

where the limit is taken over the pullback maps s∗
n : D(Xn,Q) ! D(Xn+1,Q)

We don’t have to worry about any hyper-completeness issues here, as everything
is (locally) compact.

Proposition 3.5. Let εX : X• ! X and εY : Y• ! Y be augemented semi-simplicial
varieties over C. Then the following diagram of stable Q-linear ∞-categories com-
mutes:

D(X• × Y•,Q) D(X•,Q) ⊗Q D(Y•,Q)

D(X × Y,Q) D(X,Q) ⊗Q D(Y,Q).

R(εX×εY )! RεX,!⊗RεY,!

�•

∼
�

Note that this is a statement purely on the derived category of Q-modules on the
schemes, and does not involve any statement about Hodge structures.
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Some examples and more general theory

Proof. The lower isomorphism is [Vol23, 1.2.30] (note that varieties are locally
compact). Now the point is that we can use the limit-description of D(X•,Q),
together with the fact that R(−)! can be computed termwise, to get the result from
[Vol23, Prop.1.6.11]. �

Corollary 3.6. Let X and Y be varieties over C, with semi-simplicial resolutions
εX : X• ! X and εY : Y• ! Y . If εX and εY are of cohomological descent, then so is
εX × εY .

Proof. This now follows from the above proposition, together with the fact that
since semi-simplicial resolutions leads to (degree-wise) proper maps, so R(−)! and
R(−)∗ agree. Note that it is not necessary for the upper-horizontal map to be an
isomorphism that this corollary holds, as we have:

R(εX × εY )!QX•×Y•
∼= R(εX × εY )!(QX• �• QY•)
∼= RεX,!Q� RεY,!Q
∼= QX �QY

∼= QX×Y .

�

Proposition 3.5 should also hold for (bi-)filtered complexes, since we can apply
Fun(Z, −) respectively Fun(Z × Zop, −) to it.7

4 Some examples and more general theory

Mayer-Vietoris sequence associated to a resolution of singularities

This is taken from [CMP17, pg.68-70] (see also [PS08, Thm.5.35]), but the proof is
apparently not well-documented ([Cor16, pg.14]).

7In [Del74, (8.1.24)], it is just stated without any elaboration that for j′ : U ′ ↪! X ′ the inclusion
of an open subset U ′ into a smooth-projective X ′ with complement a normal crossing divisor,
and j′′ : U ′′ ! X ′′ analogusly, the inclusion j : U := U ′ × U ′′ ↪! X ′ × X ′′ =: X yields a
quasi-isomorphism

Rj′
∗Q� Rj′′

∗ Q
∼−! Rj∗Q,

a filtered quasi-isomorphism

(Rj′
∗Q, τ) � (Rj′′

∗ Q, τ) ∼−! (Rj∗Q, τ)

and a bi-filtered morphism

Ω•
X′ (log Y ′), W, F ) � Ω•

X′′ (log Y ′′), W, F ) ∼−! Ω•
X(log Y ), W, F ).

But the first isomorphism already is the ordinary Künneth, as in [Vol23, Prop.1.6.11].
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Some examples and more general theory

Proposition 4.1. Let X be a singular projective variety with singular locus Σ, and
consider the resolution of singularities:

Σ̃ X̃

Σ X
i

,

where Σ̃ is the exceptional locus. Then there is an associated long-exact sequence of
mixed Hodge structures

. . . Hm(Σ̃,Q) Hm(X,Q) Hm(X̃,Q) ⊕ Hm(Σ,Q) Hm−1(Σ̃,Q) . . . .

To quote [Cor16] — the cohomology of X is sliced by putting a ration weight
filtration on it the graded pieces of which are either pure Hodge structures, or mixed
Hodge structures of lower-dimensional schemes.

Idea of proof, as in [PS08]. This statement holds for any 2-cubical variety which is
of cohomological descent. The idea is to cover a 2-cubical variety

U Z

Y X

by the diagram of cubical hyperresolutions

U• Z•

Y• X•

which induces a quasi-isomorphism8

Hdg•(X•) ∼−! cone•(Hdg•(Y•) ⊕ Hdg•(Z•) ! Hdg•(U•))[−1].

So we have a distinguished triangle of the form

Hdg•(X•) ! Hdg•(Y•) ⊕ Hdg•(Z•) ! Hdg•(U•),

and the long-exact cohomology sequence of this triangle is what we want. �

More examples on this can be found in [Cir21].
8again, this should hold on the level of topological spaces, but I am not sure why it respects the

Hodge-structure
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5 The Leray spectral sequence is motivic

5.1. Let f : Y ! X be a morphism of algebraic varieties, and the induced derived
pushforward Rf∗ : D(Y,Q) ! D(X,Q). Associated to it we have the Leray spectral
sequence (which is a special instance of the Grothendieck spectral sequence for the
composition with the structure maps to Spec(C)),

Ei,j
2 = Hi(X, Hj(Rf∗F)) =⇒ Hi+j(Y,F)

for any complex F of local systems on Y . The goal now is to show that this is a
spectral sequence of mixed Hodge structures. This is due to Arapura ([Ara04]). We
only mention this in passing, because it also goes under the name motivic. In the
publication, they use this approach to calculate the motivic structure on H3(X) for
a smooth projective treefold over C that admits a flat map X ! S that has fibers
given by connected rational curves, but I do not understand enough geometry to
elaborate.
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