
Tannakian formalism and semi-simplicity of the Satake category

Aaron Wild∗

Following Richarz ([Ric14]), we sketch his proof that the graded cohomology functor
for the category of L+ G-equivariant perverse sheaves on the Grassmanian is an exact
and faithful functor. This, together with properties of the convolution product on
PL+ G(GrG) implies that the latter category is neutral Tannakian, by a theorem of
Deligne and Milne. These arguments do not rely on the notion of ULA-sheaves, and
the proof is similar to [MV07, §7] (where they use the analytic topology). These notes
were prepared for the Kleine AG on the Geometric Satake Equivalence, which took
place in Bonn in March 2023. I would like to thank Louis Jaburi for helping me prepare
for the talk. Some claims and questions I could not resolve are marked accordingly.
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1 Tannakian categories

Reconstructing a finite group from its category of representation

1.1. Let G be a finite group, and k a field. Then its category of finite-dimensional
k-linear representations Repfin

k (G) admits a forgetful functor F to the category of
k-vector spaces. Let Autb(F ) be the group of natural isomorphisms λ : F ! F that
are compatible with the b-structure of representations, i.e. λVbW = λV b λW . For
every g ∈ G, the G-action induces such a b-equivariant natural transformation. It
can be shown that this assignement induces an equivalence of categories

ρ : G ∼−! Autb(F ).

Note however that the functor F is crucial, as every two finite groups with same
number of conjucagy classes have equivalent categories of finite dimensional repre-
sentations.

∗aaron.wild@posteo.net. This is version b4d2272 of this document. An up-to-date version can
be found at aaronwild.gitlab.io

aaron.wild@posteo.net
aaronwild.gitlab.io


Tannakian categories

Remark 1.2. A similar statement holds true for algebraic groups over fields, see
for example [Mil17, Thm.9.2].

Monoidal categories

Definition 1.3. Let C be a category. A nonunital monoidal structure on C consists
of the following data:

• A functor b : C × C ! C, called the tensor product functor ;
• A collection of isomorphisms

φX,Y,Z : X b (Y b Z) ∼−! (X b Y ) b Z

called the associativity constraint, that are functorial in the following sense: For
every triple of morphisms f : X ! X ′, g : Y ! Y ′, and h : Z ! Z ′, the diagram

X b (Y b Z) (X b Y ) b Z

X ′ b (Y ′ b Z ′) (X ′ b Y ′) b Z ′

φ
∼

fb(gbh) (fbg)bh

∼
φ

The isomorphisms φX,Y,Z are required to satisfy the following compatibility condition:
For every quadruple of objects X,Y, Z, T ∈ C, the diagram of isomorphism

X b (Y b (Z b T ))

X b ((Y b Z) b T ))

(X b (Y b Z)) b T ((X b Y ) b Z) b T

(X b Y ) b (Z b T )

idbφ

φ

φbid

φ

φ

commutes.

Definition 1.4. Let (C,b, φ) be a nonunital monoidal category. A commutativity
constraint on C is a collection of functorial isomorphisms

ψX,Y : X b Y ∼−! Y bX

such that for all objects X,Y of C, the composition

X b Y Y bX X b Y∼
ψX,Y

∼
ψY,X
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Tannakian categories

equals the identity. The transformations φ and ψ are said to be compatible if for all
objects X,Y, Z in C, the diagram

X b (Y b Z) (X b Y ) b Z Z b (X b Y )

X b (Z b Y ) (X b Z) b Y (Z bX) b Y

φ

idbψ

ψ

φ

φ ψbid

commutes.1 The collection (C,b, φ, ψ) is called a nonunital symmetric monoidal
category.

Definition 1.5. Let (C,b, φ, ψ) be a nonunital symmetric monoidal category. A
pair (1, u) where 1 is an object of C, u : 1 ∼−! 1 b 1 is an isomorphism is called
a unit object of C if the functor X 7! 1 b X is an equivalence of categories.2 If C
admits a unit object, then it is called a tensor category.

Remark 1.6. In a symmetric monoidal category, it is possible to “iterate” tensor
products. In these notes, will be oblivious to this subtelty.

Definition 1.7. Let (C,b) be a tensor category, and X,Y ∈ C two objects. If the
functor Cop ! Set, T 7! HomC(T bX,Y ) is representable, we denote representing
object by Hom(X,Y ).

1.8. Let (C,b) be a tensor category, with unit object 1. Assume that Hom(X,Y )
exists for all X,Y ∈ C. There is a canonical map

evX,Y : Hom(X,Y ) bX ! Y

corresponding to the identity of Hom(X,Y ).3 These maps induce composition
morphisms

Hom(X,Y ) b Hom(Y, Z) ! Hom(X,Z)
and isormphisms

Hom(Z,Hom(X,Y )) ∼−! Hom(Z bX,Y )

The dual of an object X is defined as X∨ : Hom(X,1). It is possible to extend (−)∨

to a functor Cop ! C. For every X ∈ C, there is a canonical map X ! X∨∨. We say
that X is reflexive if this map is an isomorphism. Moreover, there are, for all finite
families of objects (Xi) and (Yi), canonical morphisms

à

I

Hom(Xi, Yi) ! Hom(
à

I

Xi,
à

I

Yi).

1This can also be arranged as a hexagon.
2For not-necessarily symmetric monoidal categories, one can also define unitality, but then one has

to require left- and right-unitality separately.
3For example, in the category of R-modules, we have Hom(M, N) = HomR(M, N), and the

evaluation map evM,N : HomR(M, N) b M ! N is given by (f, x) 7! f(x).
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Tannakian categories

Definition 1.9. Let (C,b) be a tensor category. We say that it is rigid if:

(i) Hom(X,Y ) exists for all objects X,Y ∈ C,
(ii) the canonical morphism

Hom(X1, Y1) b Hom(X2, Y2) ! Hom(X1 bX2, Y1 b Y2)

is an isomorphism for all collections X1, X2, Y1, Y2 ∈ C, and
(iii) every object of C is reflexive.

Tannakian reconstruction

Proposition 1.10 ([DM82, Proposition 1.20]). Let C be a k-linear abelian category,
where k is a field, and b : C × C ! C a k-bilinear functor. Suppose there are given:

• A faithful exact k-linear functor F : C ! Veck;
• Functorial isomorphisms

φX,Y,Z : X b (Y b Z) ∼−! (X b Y ) b Z, and ψ : X b Y ∼−! Y bX.

Assume these satisfy the following properties:

(i) The diagram
C × C C

Veck × Veck Veck

bC

F×F F

bk

commutes;
(ii) F (φX,Y,Z) is the usual associativity in Veck;
(iii) F (ψX,Y ) is the usual commutativity isomorphism in Veck;
(iv) There exists an object U in C, such that F (U) = k, and for all X ∈ C, the

canonical isormphisms from (i)

F (X) bk F (U) ∼= F (X) ∼= F (U) bk F (X)

are induced by isormphisms in C.4

(v) If L ∈ C is an object such that F (L) has dimension 1, then there exists an
object L′ in C such that the natural map Lb L′ ! 1 is an isomorphism.

4This is the version of this condition as in [Mil17, Theorem 9.24], leaving no room for interpretation
what exactly an “invertible object” is supposed to be in the setting where C is not already a
monoidal category (In the original [DM82], this condition does not appear, but in a later revised
version ([DM22]), the object U is required to be “invertible”, and an example is provided that
this is necessary).
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Tannakian categories

Then (C,b, φ, ψ) is a rigid abelian tensor category.

Definition 1.11. Let (C,b) and (C′,b′) be tensor categories.

(i) A tensor fuctor is a pair (F, c) where F : C ! C′ is a functor and c is a natural
isomorphism

F (X) b′ F (Y ) ∼−! F (X b Y ),

such that F is compatible with the associativity and commutativity constraints
and maps an identity object to an identity object.

(ii) Let (F, c) and (D, d) be tensor functors. A morphism of tensor functors is a
natural transformation λ : F ! G that is compatible with c and d and the
isomorphism for the unit.5

(iii) Let k be a field. For any k-algebra, there is the canonical base-change functor
φR : V 7! V bk R. If (F, c) and (G, d) are tensor functors C ! Veck, then we
define the functor Homb(F,G) to be the functor of k-algeras

R 7! Homb(φR ◦ F, φR ◦G).

Theorem 1.12 ([DM82, Theorem 2.11]). Let (C,b) be a rigid abelian tensor
category such that k = End(1), and let F : C ! Veck be an exact faithful k-linear
tensor functor. Then:

(i) The functor Autb(F ) is representend by an affine group scheme GC;6

(ii) The functor C ! Repk(GC) defined by F is an equivalence of tensor categories.

Remark 1.13. The last part of the theorem is crucial, as it asserts not only that
the categories C and Repk(GC) are isomorphic, but also that this isomorphism is
compatible with the tensor structures on both sides.

Properties of G are encoded in Repk(G)

Proposition 1.14 ([DM82, Prop.2.20]). Let G be an affine group scheme over k.

(i) G is is finite if and only if there exists an object X of Repk(G) such that every
object of Repk(G) is isomorphic to a subquotient of Xn for some n > 0.

(ii) G is algebraic if and only if Repk(G) has a tensor generator X.

The category of (i) is denoted by 〈X〉. A tensor generator is an object X ∈
Repk(G) such that every object of Repk(G) is isomorphic to a subquotient of
P (X,X∨) for some (not-necessarily fixed) polynomial P ∈ N[s, t].

5If C, C′ are both rigid, then every morphism of tensor functors is an isomorphism of tensor functors
6More precisely, a Hopf algebra (whose spectrum will give the affine group scheme).
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Semisimplicity of PL+ G(GrG) and simple objects

Proposition 1.15 ([DM82, Cor.2.22]). Assume that k has characteristic zero.
Then G is connected if and only if, for every representation X of G on which G acts
non-trivially, 〈X〉 is not stable under b.

Proposition 1.16 ([DM82, Prop.2.23]). Let G be a connected afine group scheme
over a field k of characteristic zero. The category Repk(G) is semi-simple if and only
if G is pro-reductive.

2 Schubert cells and varieties

Definition 2.1. Let µ ∈ X∨
+ be a reprenstative of a L+G-orbit on GrG, with Oµ

the corresponding orbit, and jµ : Oµ ↪! Oµ the open embedding into its reduced
closure. The scheme Oµ is called a Schubert cell, and Oµ is called a Schubert variety.

Remark 2.2. Even though the Schubert cell Oµ is sometimes called an “open”
Schubert cell, it is in general not open in GrG.

Lemma 2.3 (c.f. [BR18, Prop.1.3.2]). We have a stratification

GrG =
⊔

λ∈X∗(T )+

Oλ

Moreover, this decomposition is a stratification of GrG and, for any µ ∈ X∗(T )+, it
holds that

Oµ =
⊔

λ∈X∗(T )+

λ6µ

Oµ.

The Schubert cells Oµ are smooth quasi-projective varieties of dimension (2ρ, µ), and
the Schubert varieties Oµ are projective varieties.

Theorem 2.4 ([Fal03, Thm.8]). For µ ∈ X∨
+, the scheme Oµ is normal, Cohen-

Macaulay and has rational singularities.

3 Semisimplicity of PL+ G(GrG) and simple objects

3.1. Let X be a scheme, and j : Z ↪! X a locally closed immersion. Associated to
it is the intermediate extension functor j!∗ : P(Z) ! P(X), which is defined for a
complex C ∈ P(Z) as

j!∗C = im(pH0(j!C) ! pH0(j∗K)),

where pHi := pτ>i is the i-th truncation functor for the perverse t-structure on
Db
c(X,Λ). These functors allow us to classify the simple objects of P(X): They are

given by the intersection complexes

IC(Z,L) := j!∗L[d],
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Semisimplicity of PL+ G(GrG) and simple objects

where j : Z ↪! X is a locally closed embedding, Z is smooth of dimension d and L is
a local system on Z ([BBD82, Thm.4.3.1]). This extends to categories of equivariant
perverse sheaves, by considering them as perverse sheaves on the corresponding
classifying stack. The intersection complex F := IC(Z,L) satisfies the following
properties:

F|
X∖Z

= 0, F|Z = L[dimZ], i∗F ∈ p
D6−1(Z ∖ Z,Λ), i!F ∈ p

D>1(Z ∖ Z,Λ), (1)

where i : Z ∖ Z ↪! X is the inclusion.
In the case of the action of a connected group H on a scheme X, we can always

consider the stratification of X by the orbits of H. Then the above statement remain
valid, if “locally closed subscheme” gets replaced by “orbit”. Moreover, even though
the category of constructible sheaves with respect to a given stratification is usually
not stable under the six operations, this is valid for the orbit stratification.7 We do
not go trough the details of this, or define equivariant perverse sheaves (which is
what Richarz is using in its paper). So by PL+ G(GrG) we mean perverse sheaves with
respect to the orbit stratification. It will then follow from this (“non-equivariant”)
category of perverse sheaves being semi-simple that it is actually isomorphic to the
category of L+G-equivariant sheaves (I’m not going to spell this out, more details
can be found in [BR18]).

Proposition 3.2. The simple objects in PL+ G(GrG) are given by the intersection
complexes

ICµ = jµ!∗Λ[dim(Oµ)],

for µ ∈ X∨
+.

Proof. In a first step, we show that every finite étale covering of Oµ necessarily splits,
using the geometry of the orbits from Lemma 2.3: We can use the Zariski-Nagata
purity theorem to relate the étale fundamental group of Oµ with the étale fundamental
group of Oµ:

Theorem 3.2a ([SGA1, Exp.X,Cor.3.3]) — Let X be a separated noetherian regular
scheme and j : U ↪! X an open subscheme such that every irreducible component of
X ∖ U has codimension > 2. Then restriction to U is an equivalence of categories

j∗ : étale coverings of X ∼−! étale coverings of U.

In particular, there is an isomorphism πét
1 (U, x) ∼−! πét

1 (X,x) for every base point x.

So we have πét
1 (Oµ) = πét

1 (Oµ), and the latter group is trivial (this holds for all
normal projective rational varieties over an algebraically closed field, c.f. [SGA1,
Exp.XI,Cor.1.2]).

7I could not find any reference that gives this as a precise statement, so if you do know one, please
do get in touch!
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Semisimplicity of PL+ G(GrG) and simple objects

As the stabilizers of the L+G-action are connected, the triviality of the étale
fundamental group of Oµ implies that any L+G-equivariant local system on Oµ is
isomorphic to the constant sheaf Λ.8 By the correspondence we recalled above, this
gives the description of the simple objects in PL+ G(GrG). �

Recall that an abelian category is called semisimple if every object can be written
as a finite direct sum of simple objects.

Proposition 3.3. The category PL+ G(GrG) is semisimple.9

Proof. Semisimple categories can be characterized by vanishing of non-split extensions,
i.e. we have

Lemma 3.3a — Let A be an abelian category, such that Ext1
A(S, S′) = 0 holds for

all simple objects S, S′ ∈ A. Then A is semisimple.

By definition (and Proposition 3.2), this is the same as showing

HomDb
c(GrG,Λ)(ICλ, ICµ[1]) = 0

for all λ, µ ∈ X∨
∗ .10 We will do this by treating the several possible relations of λ

and µ separately. The main ingredient (besides the formalism of perverse sheaves) is
the following result, which is often called parity vanishing:11

Lemma 3.3b ([Lus83, 11c]) — Let µ ∈ X∨
+, and consider the closed immersion

i : Oµ ∖ Oµ ↪! Oµ. Then i∗ ICµ is concentrated in even perverse degree.

Case (i) — λ = µ.

Proof. Consider the following diagram of inclusions:

Oµ Oµ Oµ ∖ Oµ

GrG

j

jµ

i

iµ

For brevity, we write ι = iµ ◦ i for the composition. By (1), we have that ι∗ ICµ

is concentrated in negative perverse degree, and ι! ICµ is concentrated in positive
perverse degree, and thus

HomDb
c(Oµ∖Oµ,Λ)(ι

∗ ICµ, ι
! ICµ[1]) = 0. (2)

8Let H be a connected algebraic group, acting on a scheme X. Then the forgetful functor
LocG(X) ! Loc(X) is fully faithful, with essential image given by those F that satisfy act∗F ∼=
pr∗

2F . Now L+ G is connected, shouldn’t this suffice?
9There are slight differences in the proof of this proposition that appears in the published version

and the one in the latest (at the time of writing) arXiv-preprint. We follow the published proof,
with additions as in [BR18, §1.4.3].

10In the original paper, it mostly done for some Db
c(Oν , Λ). This is also fine, because Riν,∗ is faithful.

11We however only need it in one of the three cases.
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Semisimplicity of PL+ G(GrG) and simple objects

The open-closed decomposition of Oµ now yields for every A ∈ Db
c(Oµ,Λ) a distin-

guished triangle
j!j

∗A A i∗i
∗ ICµ [1]

of complexes in Db
c(Oµ,Λ). For A = iµ ICµ this gives, after applying the cohomological

functor HomDb
c(GrG,Λ)(iµ,!−, ICµ[1]), the exact sequence of abelian groups12

Hom(ι!ι∗F, ICµ[1]) Hom(ICµ, ICµ[1]) Hom(jµ,!Λ[dimOµ], ICµ[1]) ,

and we need to see that the middle term is zero. We do this by arguing that both of
the outer terms are zero. For the left group, this follows from combining (2) and the
(−)! a (−)! adjunction. For the right group, we have

Hom(jλ,!Λ[dimOµ], ICµ[1] ∼= HomDb
c(Oµ,Λ)(Λ[dimOµ], j!

λ ICµ[1])
∼= HomDb

c(Oµ,Λ)(Λ,Λ[1]),

because by D(D(Λ)) = Λ, and

j!
µD(jµ,!∗L) = D(j∗

µjµ,!∗L)D(L)[dimOµ]

holds for any local system L on Oµ (this is a general statement about Verdier duality
and its interaction with intersection cohomology (i.e. we do not need to assume that
Oµ does not admit non-trivial local systems).

Now HomDb
c(Oµ,Λ)(Λ,Λ) = H1(Oµ,Λ) vanishes, because Oµ is simply connected.

y

Case (ii) — λ 6= µ and either λ 6 µ or µ 6 λ.

Proof. Assume µ 6 λ (the other case follows by exactly the same argument). Let
jµ : Oµ ↪! GrG be the locally closed embedding, and let G ∈ Db

c(GrG,Λ) be the cone
of the adjunction map

ICµ jµ,∗j
∗
µ ICµ

∼= jµ,∗Λ[dimOµ], (3)

where the last isormphisms follows from (1). Now since jµ is a locally closed immersion,
the functor jµ,∗ is left (perverse) t-exact, and hence jµ,∗Λ[dimOµ] is concentrated in
non-negative perverse degrees, and because the map ICµ ! pH0(jµ,∗Λ[dimOµ]) is a
monomorphism in the abelian category PL+ G(GrG)13 the complex G is concentrated

12now dropping the index Db
c(GrG, Λ) from the notation

13In [BR18, pg.38], they say this is due to the “classical fact” [BBD82, (1.4.22.1)]. I don’t
see how this follows from this formular. But I also think this map is just the inclusion
im

(
pH0(jµ,!L) ! pH0(jµ,!L)

)
↪! pH0(jµ,∗L) for L = Λ[dimOµ], which is injective in every

abelian category.
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Semisimplicity of PL+ G(GrG) and simple objects

in non-negative perverse degrees as well.14 Since G completes (3) to an exact triangle,
there is an associated exact sequence of abelian groups

Hom(ICλ,G) Hom(ICλ, ICµ[1]) Hom(ICλ, jµ,∗Λ[dimOµ + 1]) .

Since G is concentrated in non-negative perverse degrees and supported on Oµ (as both
ICµ and jµ,∗j∗

µ ICµ are), we have (similar to the previous case) that Hom(ICµ,G) = 0.
By construction, j∗

µ ICλ is concentrated in cohomological degree − dimOµ. On
the other hand, by Lemma 3.3b, j∗

µ ICλ has complex only in degrees of the same parity
as dim(Oλ). Since dim(Oλ) ≡ dim(Oµ) mod 2 (they belong to the same connected
component of GrG)15 we thus have that j∗

µ ICλ is concentrated in cohomological
degrees 6 − dimOµ − 2, and hence

Hom(ICλ, jµ,∗Λ[dimOµ + 1]) = Hom(j∗
µ ICλ,Λ[dimOµ + 1])

vanishes. The construction of G as cone induces an exact sequence of abelian groups

Hom(ICλ,G) Hom(ICλ, ICµ[1]) Hom(ICλ, jµ,∗Λ[dimOµ + 1] .

Since by assumption Oµ ⊆ Oλ ∖ Oλ, and G is supported on Oµ, the left-hand side
vanishes, and by the above considerations, the right-hand does as well. y

Case (iii) — λ 66 µ and µ 66 λ.

Proof. Write iµ : Oµ ↪! GrG for the inclusion. Since ICµ is supported on Oµ, we have
iµ,∗i

∗
µ ICµ = ICµ, and so

HomDb
c(GrG,Λ)(ICλ, ICµ[1]) ∼= HomDb

c(Oµ,Λ)(i
∗
µ ICλ, i

∗
µ ICµ).

Set Z = Oµ ∩ Oλ, and write fµ : Z ↪! Oµ for the closed immersion. The point now
is that i∗µ ICλ is supported on Z, and so it is of the form fµ,!A for some complex of
sheaves A ∈ Db

c(Z,Λ). Consider the associated cartesian diagram

Oλ ∩ Oµ Oµ

Oλ GrG

fµ

fλ iµ

iλ

By proper base change, we have i∗µiλ,∗ ICλ = fµ∗f
∗
λ ICλ, and so by adjunction

HomDb
c(GrG,Λ)(iλ,∗ ICλ, iµ,∗ ICµ) = HomDb

c(Oµ∩Oλ,Λ)(f
∗
λ ICλ, f

!
µ ICµ[1]),

14Let T be a triangulated category with a t-structure and write τ : T ! T♥ for the truncation
functor. Let f : A ! B be a map in T, and assume A ∈ T♥, B ∈ T>0 and that τ(f) is an injective
map in the abelian catgeory T♥. Then cone(f) ∈ T>0.

15And the parity of the dimension of a Schubert variety is constant on each connected component.
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Fiber functor on PL+ G(GrG)

and the later group vanishes.16 Arguing as before, this implies that in fact

HomDb
c(GrG,Λ)(ICλ, ICµ[1]) = 0.

y

�

4 Fiber functor on PL+ G(GrG)

Let
ω(−) =

à

i∈Z

RiΓ(GrG,−) : PL+ G(GrG) −! VecΛ

be the cohomology functor with values in finite-dimensional Λ-vector spaces.

Lemma 4.1. The functor ω : PL+ G(GrG) ! VecΛ is additive, exact and faithful.

Proof. Additivity is immediate. Moreover, since PL+ G(GrG) is semisimple, every
short-exact sequence in it splits, and since ω is additive, it follows that it is exact. To
show faithfulness, it suffices (in light of Proposition 3.3) to show that ω(ICµ) 6= 0 for
any µ ∈ X∨

+. This holds in fact for any projective variety (such as Oµ), and follows
from the decomposition theorem for the proper pushforward of perverse sheaves:

Theorem 4.1a — Let f : Y ! X be a proper morphism of varieties. If C ∈ Db
c(Y,Λ)

is a direct sum of (shifted) simple complexes, then so is Rf∗C ∈ D(Y,Λ).

Now each Schubert variety is projective, and the intersection cohomology of the
projective space is non-zero.17 �

Proposition 4.2. The pair (PL+ G(GrG), ?) is a neutral Tannakian category with
fiber functor ω : PL+ G(GrG) ! VecΛ.

Proof. We use Proposition 1.10. In the previous talks we have seen that PL+ G(GrG)
together with the convolution product ? is a symmetric monoidal category, and that
ω is a symmetric monoidal functor. Additivity, exactness and faithfulness of ω were
the content of the previous Lemma 4.1. So it remains to show that (PL+ G(GrG), ?)
has a unit object, and that any one dimensional object has an inverse. The unit
object is given by IC0 ' Λ concentrated in the base point e0. Finally, we note that
we have dim(ICµ(A)) = 1 if and only if dimOµ = 0 (c.f. [BR18, Prop.1.5.13]). In
that case, IC−µ ? ICµ ' IC0.18 �
16Let Z1, Z2 ⊆ X be two locally closed subschemes, such that Z1 ( Z2 and vice versa. Let

ιi : Z1 ∩ Z2 ↪! Zi be the two inclusions. Then ι∗
i ICi is concentrated in negative perverse degree,

and ι!
i ICi is concentrated in positive perverse degree, for any intersection cohomology sheaf ICi

on Zi.
17Richarz argues that we can find a generically finite morphism π : Oµ ! P

n, but I do not know
why we need to add this.

18This holds true always for the convolution product of IC-sheaves supported on singletons.
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Remark 4.3. Equiped with this proposition and Theorem 1.12, the missing part
for proving the geometric Satake equivalence is the identification

Autb(ω) = Ĝ,

where Ĝ is the Langlands dual group of G. This is the topic of the next talk.
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