
Galois gerbes and Erig

Aaron Wild∗

We outline the construction of Kaletha’s Galois gerbe Erig that is used for the parametriza-
tion of rigid inner forms, following [Kal16]. These notes were prepared for the gradutate
seminar on the local Langlands conjecturs for non quasi-split groups, which took place in
Bonn during the summer semester 2023. I would like to thank Zhen Huang, Han Jiadong,
and David Schwein for helping me prepare for this talk. Some claims and questions I could
not resolved are marked in pink, additions for clarification after the talk in blue.
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Throughout, F denotes a local field of characteristic zero.

1 Recollections

1.1. One of the main features of Galois cohomology is Tate-Nakayama duality, which
can be understood as an isomorphism

H1(Γ, T ) = Ĥ1(F, T ) ∼−! Ĥ−1(E/F,X•(T )) = X•(T )Γ[tor],

where T is a torus, E/F a finite Galois extension that splits T , and X•(T )Γ[tor] is the
torsion part of the Galois coinvariants of the action on the cocharacters X•(T ). Kottwitz
gives an interpretation of the right-hand side in terms of the dual group, and obtains an
isomorphism1

H1(Γ, T ) ∼−! π0(T̂ Γ)D.

This morphism in fact extends to all reductive groups:

Theorem 1.1a ([Kot86, Thm.1.2]) — Let G be a connected reductive group over a local
field F of characteristic zero. Then there is a unique morphism

α : H1(Γ, G) −! π0(Z(Ĝ))D,

∗aaron.wild@posteo.net. This is version e2a4754 of this document. An up-to-date version can be
found at aaronwild.gitlab.io/writing

1An expository account of this can be found in [Dri].
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Recollections

that extends the Tate-Nakayama isomorphism, in the sense that for any maximal torus T
of G, the diagram

H1(Γ, T ) H1(Γ, G)

π0(T̂ Γ)D π0(Z(Ĝ)Γ)D

commutes. If F is p-adic, then this is an isomorphism. If F = R, then the kernel and
image can be explicitly described.

1.2. This is helpful because we can use it to calculate the Galois cohomology groups
that classify different variants of “inner twists”: Recall that for a reductive algebraic
group G, we have the bijection

{inner twists ξ : G! G′}/iso. of inner twists

H1(Γ, Gadj).

∼

We also saw that we have

{pure inner twists (ξ : G! G′, z)}/iso. of pure inner twists

H1(Γ, G),

∼

and that these notions are compatible in the sense that the diagram

{pure inner twists of G}/∼ {inner twists of G}/∼

H1(Γ, G) H1(Γ, Gadj)

(ξ,G′,z) 7!(ξ,G′)

∼ ∼

commutes. However, the lower horizontal arrow is not necessarily surjective or injective:

Example 1.3. Consider the case of G = SLn over Qp. We have an explicit description
of the inner forms of G via central simple F -algebras of F -dimension n2 every inner
form of SLn(Qp) is of the form GLm(D)der, where D is is a division algebra over F
of dimension d2 and n = md holds. Now the dual group of SLn(F )adj is given by

̂SLn(Qp)adj = SLn(C).2 We can then also use the Kottwitz isomorphism to calculate
both H1(Γ, G) and H1(Γ, Gadj):

2We know that taking (̂−) interchanges being of adjoint and of simply-connected type, and we have
̂SLn(Qp) = PGLn(C) = PSLn(C) (since C is algebraically closed), which clearly admits the simply-

connected cover SLn(C).
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Galois gerbes in characteristic 0

• For G, we have H1(Γ, G) = π0(Z(Ĝ)Γ)D = π0(Z(PGLn(C))Γ)D = {1}, since PGLn(C)
has trivial center. We see that the only pure inner twist of SLn is the trivial pure
inner twist!

• For Gadj, we have

H1(Γ, Gadj) = π0(Z(Ĝadj)Γ)D = π0(Z(SLn(C))Γ)D = (µn)D,

since the Galois action is trivial.

In fact, we always encounter this problem when G is p-adic and simply connected, as
then H1(Γ, G) = {1}.

Example 1.4. Consider the case of U∗
n over Qp for n odd. Then the natural map

H1(Γ, U∗
n)! H1(Γ, U∗

n,adj) is given by the projection Z/2Z! {1}, i.e. U∗
n does not have

a non-trivial inner form, but there are two non-equivalent ways to view U∗
n as an pure

inner form of itself.

Proof. We claim that in the case n odd, we have

H1(Γ, U∗
n) = Z/2Z and H1(Γ, U∗

n,adj) = {1}.

Again, we can use the Kottwitz isomorphism

H1(Γ, G) = π0(Z(Ĝ)Γ)D

in both cases (where Ĝ is the Langlands dual group). Now, we have Û∗
n = GLn(C),

and the Galois action factors over ΓE/F , where the non-trivial element σ acts via
g 7! Adj(Jn)g−1,t, for

Jn =


−1

1
−1

...
(−1)n


Moreover, we have U∗

n,adj = U∗
n /U∗

1, and Û∗
n,adj = SLn(C), with the same action.

Now the restriction of the Galois action to Z(GLn(C)) = C× and Z(SLn(C)) = µn

is in both cases given by complex conjugation. So H1(Γ, U∗
n) = π0(C×,(−)−1)D ∼= Z/2Z

(since we can restrict to the action on S1, where it is given by complex conjugation), and
H1(Γ, U∗

n,adj) ∼= {1} (since n is odd). �

2 Galois gerbes in characteristic 0

Definition 2.1 ([LR87],[Kot14]). Assume char(F ) = 0. A Galois gerbe is a group
extension

1 u(F̄ ) E Γ 1,
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Galois gerbes in characteristic 0

where u(F̄ ) is the F̄ -valued points of an abelian F -group scheme u, and such that the
action of Γ on u(F̄ ) is given as

σ · a = σ̂aσ̂−1

with σ̂ ∈ E a preimage of σ. We call the group u(F̄ ) the band of the gerbe. Two such
extensions are called equivalent if there is a commutative diagram of the form

1 u(F̄ ) E′ Γ 1

1 u(F̄ ) E Γ 1

∼

Definition 2.2. Let G be an algebraic group defined over F , and Z ! G with Z a
finite multiplicative group whose image is contained in the center of G. Let u! E be
a Galois gerbe. The set G(F̄ ) carries a continous Γ-action, which can be inflated to a
continous E-action.3 Let

Z1(u! E, Z ! G) ⊆ Z1
cont(E, G(F̄ ))

consist of these continous cocycles f : E! G(F̄ ) such that their restriction to u(F̄ ) ⊆ Erig

factors as
u(F̄ ) Z(F̄ )

E G(F̄ )

f̃(F̄ )

f

where f̃(F̄ ) is the map on F̄ -valued points induced by a morphism of group schemes
f̄ : u ! Z. Now Z(u ! E, Z ! G) is closed under the equivalence relation of being a
1-coboundary, and so we can define

H1(u! Erig, Z ! G) := Z(u! E, Z ! G)/ B(E, G(F̄ )),

which is naturally a pointed set.

Lemma 2.3. Let G be an algebraic group, and u ! E a Galois gerbe. Then the
canonical map H1(Γ, G)! H1(Γ, Gadj) factors as

H1(Γ, G) H1(Γ, Gadj)

H1(u! E, Z ! G)

for any finite central subgroup Z ! G.

3i.e. γ ∈ E acts by via its image in Γ
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Galois gerbes in characteristic 0

So the cohomology set H1(u! E, Z ! G) is a good candidate for a set that is “big
enough” for the map to H1(Γ, Gadj) to be surjective.

Proposition 2.4 ([NSW08, (2.7.7)]). Then there is a bijection between Galois gerbes

1 u(F̄ ) E Γ 1

and the set H2(Γ, u).

Sketch of proof. Let us sketch the proof in the case that u(F̄ ) is finite:

• Suppose we are given such an extension. The map E! Γ admits a continous section
s : Γ! E, which is not necessarily a group homomorphism (this is the case if and only
if the extension splits), but we can still assume s(1) = 1. Consider now the map

φs : Γ2 ! E, (g1, g2) 7! s(g1)s(g2)s(g1g2)−1.

This map becomes the constant map after composing with the projection E! Γ, so
factors over u(F̄ ) ⊆ E, i.e. we obtain a continous 2-cochain. One can then check
that this map is in fact a 2-cocycle, and that for any other choice of section s′ the
associated map φs′ is cohomologous to φs, so the extension gives a well-defined element
of H2(Γ, u). One then further checks that two equivalent extensions give rise to the
same cohomology class.

• For the other direction, let φ : Γ × Γ! u(F̄ ) be a continous 2-cocycle. We can assume
that φ is “normalized”, i.e. that φ(1, g) = φ(g, 1) = 1 holds for all g ∈ Γ (more
precisesly, the cohomology class of φ ∈ H2(u, Γ) contains a normalized representative).
We then use φ to define a group structure on the topological space u(F̄ ) × Γ (endowed
with the product topology), via

(u1, g1) ?φ (u2, g2) := (u1 · g1u2 · φ(g1, g2), g1g2),

where we use the explicit description of the Γ-action on u(F̄ ) to make sense of the factor
g1u2. One then uses the cocycle property and that φ is normalized to calculate that
this defines a group structure on u(F̄ )×Γ. One then further verifies that the canonical
inclusion and projection become group homomorphisms, and that any cohomologous
normalized cocycle yields an equivalent extension.

�

Remark 2.5. We can also describe the group H1(u, Γ) in this setup. Namely, for any
extension

1! u(F̄ )! E
π
−! Γ! 1,

we can consider the group Aut([E]) of automorphisms of the extension. Say that two
such automorphisms f1, f2 are equivalent if f1 = γu ◦ f2 holds, where γm : E ∼! E is given
by conjugation with some element in u(F̄ ), and consider the quotient Aut([E])/ ∼ by this
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Construction of H1(u! Erig, Z ! G)

equivalence relation. One can then check that for any continous cocycle φ : Γ ! u(F̄ )
and f ∈ Aut([E])/ ∼, the morphism

E! E, x 7! φ(π(x)) · f(x)

is again an element of Aut([E]), and that this descends to a well-defined action of H1(u, Γ)
on Aut([E])/ ∼, that is moreover simply transitive.

The idea now is to find such a u and a “distinguished” element in H2(Γ, u) to
parametrize inner forms. Note that in the trivial case u = {1}, we just recover ordinary
Galois cohomology.

2.6. Before we continue, let us make the general observation that for any G algebraic,
the long-exact cohomology sequence for Z(G) G Gadj gives rise to the long-exact
sequence of pointed sets

H1(Γ, G) H1(Γ, Gadj) H2(Γ, Z(G)),δ

and so for a class ε ∈ H1(Γ, Gadj), to it lying in the image of H1(Γ, G)! H1(Γ, Gadj) is
given by the class δ(ε) ∈ H2(Γ, Z(G)). The point now is that δ(ε) defines a Galois gerbe
Eε banded by Z(G), and inflation is compatible with this in the sense that the diagram

H1(Eε, G) H1(Eε, Gadj) H2(Eε, Z(G))

H1(Γ, G) H1(Γ, Gadj) H2(Γ, Z(G))

inf inf inf

commutes.4 The point now is that inf(δ(ε)) = 0 holds in H2(Eε, Z(G)) ([Gir71, VIII.5]).
In other words, passing from Γ to Eε alows us to at least have ε in the image of the map
H1(Eε, G) ! H1(Eε, Gadj). In particular, if H2(Γ, Z(G)) is cyclic (eg. G = SLn), then
passing to the gerbe defined by a generator already makes the map H1(E, G)! H1(E, Gadj)
surjective.

3 Construction of H1(u! Erig, Z ! G)

Construction 3.1. Let F be a local field of characteristic zero, with fixed algebraic
closure F̄ . Let RE/F [n] := ResE/F µn be the Weil restriction of scalars of the group µn

of n-th roots of unity. Explicitly, if K/F is a Galois extension, we have

RE/F [n](K) = Hom(ΓE/F , µn(F̄ ))ΓK ,

where the Galois action is given by “conjugation” in the sense of

(σ · f)(τ) := σ(f(σ−1τ)),
4I did not check this for non-abelian cohomology, but that it holds in the abelian case is [NSW08,

(1.5.2)].
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Construction of H1(u! Erig, Z ! G)

for f : ΓE/F ! µn(F̄ ), σ ∈ ΓK and τ ∈ ΓE/F . We have a natural “diagonal” inclusion
µn ↪! RE/F [n], given on K-valued points by mapping x ∈ µn(K) to the the constant
map with value x ∈ µn(F̄ ) (as we have, by assumption, µn(K) ⊆ µn(F̄ )). Let uE/F,n

be the cokernel of this map, so that we have an exact sequence of commutative group
schemes

1 µn RE/F,n[n] uE/F,n 1

For every tower of Galois extension F ⊆ K ⊆ E and m ∈ N a multiple of n, we have a
natural map p : RK/F [m]! RE/F [n], which can be described on points as

(pf)(a) =
∏

b∈ΓK/F

b!a

f(b)m/n.

This is a surjection, and induces a surjection uK/F,m � uE/F,n. Let

u := lim −uE/F,n (1)

be the inverse limit over the index category I consisting of pair (E/F, n) with E/F Galois,
n ∈ N, and

MapsI((K/F, m), (E/F, n)) =
{

{∗}, if E ⊆ K and n | m;
∅ otherwise.

Note that the F̄ -points of u have a natural profinite topology.5 Moreover, u(F̄ ) has a
natural continous Γ-action, induced from the natural Γ-action on RE/F,n(F̄ ) by post-
composition. Since u is abelian, we can thus talk of the continous cohomology groups
Hi(Γ, u) := Hi(Γ, u(F̄ )).

Theorem 3.2. We have

H1(Γ, u) = 0 and H2(Γ, u) =
{
Ẑ, if F is non-archimidean;
Z/2Z, if F = R.

Proof. For F any non-archimidean local field, we have in fact

H1(Γ, u) = lim −
E/F,n>1

H1(Γ, ResE/F µn) and H2(Γ, u) = lim −
E/F,n>1

H2(Γ, ResE/F µn),

c.f. [Dil20, Prop.3.1]. Let us show why this holds and how this implies the claim in
the case that F is p-adic (this is also the proof in [Far22, 5.1]): First, we have an exact
sequence of the form [Sta, Tag 07KY]

0 R1lim
E/F,n>1

H1(Γ, ResE/F µn) H2(Γ, u) lim −
E/F,n>1

H1(Γ, ResE/F µn) 0

5Since we have u(F̄ ) = lim
 −

uE/F,n(F̄ ), since taking global sections commutes with limits (it’s a right-
adjoint), and each of the uE/F,n(F̄ ) is endowed with the discrete topology

7
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Construction of H1(u! Erig, Z ! G)

Now we have H1(Γ, ResE/F µn) = E×/E×,n by Kummer theory, which is finite, so in
particular, the R1lim-term above vanishes, and we have

H2(Γ, u) ∼−! lim −
E/F,n>1

H2(Γ, ResE/F µn).

The groups on the right-hand side become acessible via class-field theory: we have

H2(Γ, ResE/F µn) = Br(E)[n] = 1
n
Z/Z,

and the transition maps are given by multiplication, i.e. for (E′, m) and (E, n) in the
indexing category, the transition map is given by

Br(E′)[m] = 1
mZ/Z 1

nZ/Z = Br(E)[n].·m/n

This gives H2(Γ, u) = Ẑ canonically, as desired.
�

Definition 3.3. Let ξ = −1 ∈ Ẑ = H2(Γ, u). Then this corresponds to a unique
extension of profinite groups

1 u(F̄ ) Erig Γ 1 . (2)

We call Erig the Kaletha gerbe.6

Gainig a better understanding of H1(u! Erig, Z ! G) is the main objective of the
rest of this talk.

Basic properties of H1(u! Erig, Z ! G)

Lemma 3.4. Let Z ! G be as before, with G algebraic and Z finite central. The
inflation-restriction sequence associated to (2) induces an inflation-restriction sequence
for H1(u! Erig, Z ! G),7 i.e. the following diagram is commutative with exact rows:

0 H1(Γ, G) H1
cont(Erig, G) H1(u, G)Γ H2(Γ, G)

0 H1(Γ, G) H1(u! Erig, Z ! G) Hom(u, Z)Γ H2(Γ, G)

inf res trg

6In the original paper, the notation W is used instead of Erig. We opted for Erig because it avoids
confusion with the Weil group, and also because it seems to be better suited for the comparison with
the gerbe Eiso that parametrizes extended pure inner forms which we will see in the next talk.

7Recall that for a profinite group Γ with normal subgroup N ⊆ G and A a G-module, there is always
the inflation-restriction-sequence

0 H1(Γ/N, AN ) H1(Γ, A) H1(N, A)Γ/N H2(Γ/N, AN ),

where we disregard the last term if A is not abelian. For A abelian, this is part of the five-term sequence
associated to the Hochschild-Serre spectral sequence Ei,j

2 = Hi(Γ/N, Hj(N, A)) ⇒ Hi+j(Γ, A), which
in turn is an instance of the Grothendieck spectral sequence associated to the factorization of the

G-invariants as (−)G : G-Mod G/N -Mod Ab(−)N (−)G/N

.
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Construction of H1(u! Erig, Z ! G)

where we ignore H2(Γ, G) if G is not abelian.

Note that we have the factorization over Hom(u, Z)Γ since the restricted action of u
is trivial. Moreover, since for any continous cocycle z ∈ Z1(u! Erig, Z ! G), the image
of u(f̄) under z in G is contained in Z(G) = ker(G � Gadj), we get a factorization in
the following diagram

u(F̄ ) Erig Γ

Z G Gadj

z|u z

or, in other words, the image of z in Z1(Erig, Gadj) belong to Z(Γ, Gadj), and thus gives
rise to an inner twist Gz of G.

Lemma 3.5. The set H1(u! Erig, Z ! G) is finite.

Proof. We do this using the exact sequence from Lemma 3.4, which tells us that it is enough
to see that Hom(u, Z)Γ is finite and that the map f : H1(u! Erig, Z ! G)! Hom(u, Z)Γ

has finite fiber over its image. For the first statement, we use the presentation

Hom(u, Z)Γ = lim−!Hom(uE/F,n, Z)Γ

now the article says that since Z is finite, each of the terms appearing in the filtered colimit
are finite (which i understand), but this doesn’t necessarily imply that the colimit is again
finite, right? For the second assertion, we use that for any [z] ∈ H1(u ! Erig, Z ! G)
with lift z ∈ Z(u! Erig, Z ! G), the fiber over f(z) is given by H1(Γ, Gz), where Gz is
the inner form of G obtained from twisting by z (for more on twisting, see e.g. [Ser97,
Prop.35bis] or [Knu+98, §28]).8 It is then a general statement that H1(Γ, G) is finite for
any algebraic group G defined over the local field F (c.f. [PRR93, Thm.6.14]). �

Theorem 3.6. Let G be a connected reducitve group over F , let Z be the center of
Gder, and set Ḡ := G/Z. Then there are natural surjections

H1(u! Erig, Z ! G) H1(Γ, Ḡ) H1(Γ, Gadj).a

Assume moreover that G is split.

8I think one can argue as follows: we know that the fiber of res over the distinguished element is given
by H1(Γ, G), since the inflation-restriction sequence is an exact sequence of pointed sets. Now for any
[z] in H1(Γ, G) with corresponding twist Gz, there is an a commutative diagram of the form

H1(E, Gz) H1(u, Gz)

H1(E, G) H1(u, Gz)

resGz

resG

τz τz ,

and τz induces a bijection between the fiber over res(z) and the kernel of res (the main ingredient
here is the explicit description of τz, together with the fact that u still acts trivially on Gz). But now,
again by the inflation-restriction-sequence, this kernel is given precisesly by H1(Γ, Gz).
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Construction of H1(u! Erig, Z ! G)

(i) If F is p-adic, then both maps are bijective.
(ii) If F = R, then the second map is bijective and the first map has trivial kernel (but

possibly non-trivial fibers away from the neutral element).

In particular, we have found a “natural” set that always surjects onto the set that
classifies inner forms!

Proof. Let us sketch the proof: For the map H1(Γ, Ḡ)! H1(Γ, Gadj) we use that we have
a Γ-equivariant decomposition Ḡ = Gadj × Z(G)/Z, which induces a group isomorphism

H1(Γ, Ḡ) ∼−! H1(Γ, Gadj) × H1(Γ, Z(G)/Z),

and the map in question is the natural projection, which is surjective. If G is split, then
Z(G)/G is a split torus which has vanishing first cohomology, so the second map bijective
in this case.

For the surjectivity of a, one uses that it sits in the diagram

0 H1(Γ, G) H1(u! Erig, Z ! G) Hom(u, Γ)

H1(Γ, G) H1(Γ, Ḡ) H2(Γ, Z)

inf res

a ξ∗ (3)

where ξ is the element in H2(Γ, u) defining Erig, and ξ∗ : Hom(u, Z)! H2(Γ, Z) is given
by φ 7! φ(ξ). One can show that ξ is surjective, using a version of the Tate-Nakayama
isomorphism. In the abelian case, the diagram (3) can then be extended to the right in
each row by H2(Γ, G), and the four-lemma implies the claim. In the non-abelian case,
the diagram (3) does not suffice to conclude, but we can reduce to this case: Let R ⊂ G
be a Levi subgroup and S ⊂ R a fundamental maximal torus (a maximal torus whose
dimension of the split component is as small as possible). Then Z ⊆ S, and we a diagram
of the form

H1(u! Erig, Z ! S) H1(u! Erig, Z ! G)

H1(Γ, S̄) H1(Γ, Ḡ)

a

We have seen above that the map a : H1(u ! Erig, Z ! S) ! H1(Γ, S̄) is surjective.
Moreover, S̄ ⊆ R̄ is again a fundamental maximal torus, and in this case, the bottom-
horizontal map H1(Γ, S̄)! H1(Γ, Ḡ) is known to be surjective ([Kot86, Lem.10.2]).

Finally, lets argue why a : H1(u! Erig, Z ! G)! H1(Γ, Ḡ) has trivial kernel: We
have already seen that the map H1(Γ, Ḡ)! H1(Γ, Gadj) is injective, so the kernel of a
agress with the kernel of the composition

H1(u! Erig, Z ! G) H1(Γ, Ḡ) H1(Γ, Gadj).a

One then shows that this kernel coincides with the kernel of H1(Γ, G) ! H1(Γ, Gadj),
which is now accesible via the long-exact sequence assoicated to Z(G) ↪! G, i.e. it is
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Extending the Kottwitz isomorphism

enough to see that Gadj ! H1(Γ, Z(G)) is surjective. For this, it does in fact suffice
that Tadj(F ) ! H1(Γ, Z(G)) is surjective for T ⊆ G a maximal torus, which follows
from H1(Γ, Gadj) being trivial. Now finally, in the p-adic case, we know that H1(Γ, G)!
H1(Γ, Gadj) is in fact a group homomorphism, so the kernel being trivial implies that it
is in fact injective. �

4 Extending the Kottwitz isomorphism

The goal now is to extend the morphism α : H1(Γ, G) ! π0(Z(Ĝ)Γ)D to also obtain a
more manageable description of H1(u! Erig, Z ! G).

Construction 4.1. Recall that we have the category R consisting of maps [Z ! G],
where G is a reductive group over F and Z is a finite multiplicative group.

Theorem 4.2. There is an isomorphism

ι : Ȳ+,tor
∼−! H1

ab(u! Erig)

of functors R! Set, which lifts the morphism of functors Ȳ+,tor ! Hom(u, −)Γ. In the
p-adic case, this functor is compatible with the Tate-Nakayama isormorphism in the sense
that the diagram

H1(Γ, G) H1(u! Erig, Z ! G)

π0(Z(Ĝ)Γ)D π0(Z( ˆ̄G)+)D

inf

α ∼

commutes for any finite central subgroup Z, where Z( ˆ̄G)+ is the preimage of Z(Ĝ)Γ

inside Z( ˆ̄G) under the natural map ˆ̄G! Ĝ.

We will not prove this theorem in the seminar talk, but let us at least sketch what is
going on: The first step is to construct a map in the case that the functors are restricted
to T (i.e. the target in [Z ! S] is a torus). Already the construction of the map is
difficult — it involves the new notion of “unbalanced cup products” and a more explicit
construction of the cocycle ξ ∈ H2(Γ, u) that gave rise to the gerbe Erig. Let us at least
give the construction of Ȳ+,tor in the case of [Z ! S] ∈ T: Here, we set S̄ = S/Z and
then Ȳ := X•(S̄), Ȳ+ := Ȳ/IȲ for I ⊆ Z[ΓE/F ] with E/F an extension that splits S (Ȳ+
is independent of this choice). This already suggests compatibility with the classical
Tate-Nakayama duality as reviewed in the begining of the talk. Part of the proof is that
we have the compatibility

H1(Γ, S) H1(u! Erig, Z ! S)

X•(S)
I X•(S) Ȳ+,tor([Z ! S])
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Example 4.3. Let’s continue Example 1.3. Now SLnder = SLn which has center given
by µn. Recall that the Galois action on ŜLn was trivial, so we have have Z( ˆ̄G) = µn,
which recovers what we already knew from Theorem 3.6.

Remark 4.4. It might be interesting to find an example where the unique quasi-split
inner form of G is not split, and where the surjection

H1(u! Erig, Z(Gder)! G) � H1(Γ, Gadj)

from Theorem 3.6 has non-trivial fibers, but H1(Γ, G)! H1(Γ, Gadj) is not surjective (so
we can’t take unitary groups). I couldn’t find one.
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