
Waldhausen S-construction

Aaron Wild∗

These are notes I prepared for a talk in the seminar “Higher Segal Spaces” in the winter
term 2023/24. It is mostly a summary of [DK19, §2.4], with some additional insights from
[Dyc18]. I would like to thank Dr. J. Flake, Prof. C. Stroppel and Ferdinand Wagner
for helping me prepare for this talk. All the pictures of the Waldhausen construction are
taken and modified from Ferdinand’s manuscript [Wag] (which also contains a lot of great
material on the Waldhausen construction for stable ∞-categories). Let me also mention
that the talks by both Dyckerhoff and Kapranov on Higher Segal Spaces (as linked on the
nLab article) were really helpful while preparing.
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1 Proto-exact categories

1.1. Recall the definition of the K0-theory of a ring R: Denote by Mod(R)ω the
category of finitely generated projective R-module. Then K0(R) is defined as the group
completion of the monoid π0(core(Mod(R)ω))/ ∼, where π0(core(Mod(R)ω)) is the set of
isomorphism classes in Mod(R)ω, and the equivalence relation is given by [V ] = [V ′]+[V ′′]
for every short-exact sequence of the form

0 V ′ V V ′′ 0 ,

and the monoid structure comes from taking direct sums of extensions. Note that
Mod(R)ω is not an abelian category1, but rather an exact category. This is an addi-
tive category E, together with a class E of “extensions”, i.e. composable morphisms
M ′ M M ′′, where the first morphism M ′ !M is called an admissible monomor-
phism, and the second morphism M ! M ′′ is called an admissible epimorphisms. We
will not recall the axioms, but at least a prime source of examples: Let A be an abelian
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Proto-exact categories

category, and E ⊆ A a strictly full subcategory that is closed under extensions. Then we
can take E to be the class of all composable morphisms M ′ M M ′′ such that

0 M ′ M M ′′ 0

is exact in A.

Definition 1.2. A proto-exact category is a triple (E, M, E), with E a category, and
M, E ⊆ Mor(E) classes of morphisms, subject to the following conditions:

(i) E is pointed, i.e. has an object 0 that is both initial and final. Any morphism
0! A is in M. Any morphism A! 0 is in E.

(ii) Both M and E are closed under composition and contain all isomorphism.
(iii) Let

A′ B′

A B

i′

p′ p

i

be a commutative diagram in E, with i, i′ in M and j, j′ in E. Then this diagram is
cartesian if and only if it is cocartesian.

(iv) Any diagram of the form A B B′i p in E with i ∈ M and p ∈ E can be completed
to a bicartesian square of the form

A′ B′

A B

i′

p′ p

i

with i′ ∈ M and p′ ∈ E.

(v) Dually, any diagram of the form A A′ B′p′
i′

can be completed to a bicartesian
square of the form

A′ B′

A B

i′

p′ p

i

with i ∈ M and p ∈ E.

We call the class M the class of admissible monomorphisms, and E the class of admissible
epimorphisms.

Example 1.3.
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Proto-exact categories

(i) Any Quillen exact category is proto-exact, with same classes of admissible monomor-
phisms and epimorphisms. So in particular, for any extension-closed full subcat-
egory E ⊆ A of an abelian category A, we have that E is proto-exact, and any
abelian category itself is proto-exact. So Repk(G) for G a group and k a field, is
proto-exact.

(ii) Let Set∗ be the category of pointed sets, i.e. objects of Set∗ are pointed sets (S, ∗S)
and morphisms in Set∗ are base-point preserving maps. This becomes proto-exact,
for M consisting of all injections of pointed sets, and E consisting of surjections
p : (S, ∗S) ! (T, ∗T ) that satisfy |p−1(t)| = 1 for t 6= ∗T . Note that we need this
condition for the equivalence cartesian ⇔ cocartesian to hold:

Example — As a counterexample, let A = C = {∗}, B = {∗, •1, •2} and D = {∗, •}.
Consider the diagram of pointed sets

A B

C D

where the only non-obvious map is given by

B ! D, ∗ 7! ∗, •1, •2 7! •.

Then this is cartesian, but not cocartesian — we have A tC B ∼= B for the pushout
(only the ∗’s get identified).

(iii) Let E be proto-exact, and C any category. Then the functor category Fun(C,E)
is again proto-exact, for the “pointwise” definition of admissible monomorphism
and epimorphisms. By this we mean that a natural transformation η : F ′ ! F of
functors F, F ′ : C! E is an admissible monomorphism/epimorphisms if and only
if η(x) : F (x)! F ′(x) is an admissible monomorphism/epimorphisms for all x ∈ C.
The reason that this works is that in functor categories, pullbacks and pushouts
can be computed componentwise.2

Remark — We recover in this way that Repk(G) is proto-exact, since it can be
described as a functor category via

Repk(G) ∼= Fun(BG, Mod(k)ω),

for BG the category with one object x and automorphisms given by G. But we also
get that the category RepF1(G) of finite pointed sets with G-action is proto-exact.

(iv) Let C be the category of R-modules of finite length. Consider the set {Li | i ∈ I} of
representatives of isomorphism classes of irreducible objects. Then for any I ′ ⊆ I,
the category

EI′ := {M ∈ C|M has only composition factors isomorphic to Li for some i ∈ I ′}.
2This is again similar to abelian categories: if A is abelian and C any category, then Fun(C,A) is again

abelian.
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The Waldhausen S-construction

Example 1.4 ([Dyc18, Thm.2.6]). Let E be a finitary3 proto-exact category. Then its
Hall algebra is the free abelian group

Hall(E) =
⊕

[M ]∈π0(core(E))
Z[M ],

with composition
[N ] · [L] =

∑
[M ]∈π0(core(ecat))

gM
N,L[M ],

where gM
N,L is the number of extensions isomorphic to L!M ! N .

2 The Waldhausen S-construction

Definition 2.1. Let C be a category. Its arrow category is defined as

Ar(C) := Fun(∆1,C),

where we write ∆1 for the category associated to the poset [1] = {0 6 1}.

This comes from visualizing ∆1 as • ! •, so a functor ∆1 ! C corresponds to the
choice of two objects in C with a morphism between them.

Example 2.2. Let ∆n be the category associated to the poset [n]. Then we have

Ar(∆n) = {(0 6 i 6 j 6 n)},

with the order
(i 6 j) 6 (k 6 l) iff i 6 k and j 6 l.

So we can visualize the diagram category Ar(∆n) as

(0 6 0)

(0 6 1) (0 6 2) (0 6 3) (0 6 4) (0 6 n − 1)
(0 6 n)

(1 6 n)

(2 6 n)

(3 6 n)

(n − 2 6 n)

(n − 1 6 n)

(n 6 n)

(1 6 1)

(2 6 2)

(3 6 3)

(n − 2 6 n − 2)

(n − 1 6 n − 1)

. . .

. . .

. . .

. . .

...

. . .

...

...

3i.e. for all x, y ∈ E, both Hom(x, y) and Ext(x, y) are finite sets
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The Waldhausen S-construction

with the upper row consisting of (n + 1) bullets. If C is any category, then giving a
functor Ar(∆n)! C amounts to specifying objects F (i, j)06i6j6n such that the diagram
of squares as above is commutative.

Definition 2.3. Let (E, M, E) be a proto-exact category. Let Wn(E) ⊆ Fun(Ar(∆n),E)
be the full subcategory formed by diagrams as above that satisfy additionally

(i) For every 0 6 i 6 n, we have F (i, i) ∼= 0;
(ii) All horizontal morphisms are in M, and all vertical morphisms are in E;
(iii) Each square in the diagram is bicartesian.

We denote by Sn(C) the core of Wn(C).

Example 2.4. We have S1(E) = core(M) = core(E). We can think of elements of S2(E)
as “admissible 1-filtrations”, i.e. an admissible monomorphism a ↪! b in M. However, we
also keep track of the associated quotient-object, as in the diagram

0 a b

0 b/a

Let us record this observation as a lemma:

Lemma 2.5. The functor Sn(C)! Fun(∆n−1, M) associating to F the subdiagram

F (0, 1) F (0, 2) . . . F (0, n)

is an equivalence of categories.

Proof. Iterate the above process. �

So we can more accurately visualize Sn as

(0 6 0)

(0 6 1) (0 6 2) (0 6 3) (0 6 4) (0 6 n − 1)
(0 6 n)

(1 6 n)

(2 6 n)

(3 6 n)

(n − 2 6 n)

(n − 1 6 n)

(n 6 n)

(1 6 1)

(2 6 2)

(3 6 3)

(n − 2 6 n − 2)

(n − 1 6 n − 1)

. . . .

. . .

. .

.

. . .

. . .

. . .

. . .

...

. . .

...

...
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The Waldhausen S-construction

with the yellow part corresponding to the “essential” part of the diagram, and the purple
dots corresponding to the zero-objects.

Proposition 2.6. Let E be a proto-exact category. Then the association ∆n 7! Sn(E)
defines a simplicial groupoid

S•(E) : ∆op ! Grpd.

Proof. It suffices to observe that the various Mn are stable under face- and degeneracy
maps. But this is ok, since all of them are stable under composition and they contain all
identities. �

Theorem 2.7. Let E be a proto-exact category. Then the simplicial groupoid S•(E) is
2-Segal.

Remark 2.8. Before we sketch the proof, let us note the slight diversion from the
previous talk (the same is done in [Dyc18], and it is allowed that we do this by [DK19,
Prop.1.3.8]). Namely, we talk about 2-Segal simplicial groupoids, instead of 2-Segal
topological spaces. The definition is analogous, namely if X• is a simplicial groupoid, we
require that for every n > 2, and diagonal subdivision of the regular (n + 1)-gon P with
labels {0, 1, . . . , i, j, j + 1, . . . , n} and {i, i + 1, . . . , j}, the diagram

X{0,1,...,n} X{0,1,...,i,j,...,n}

X{i,i+1,...,j} X{i,j}

is a 2-cartesian square of groupoids4, and moreover, the square

X{0,1,...,n−1} X{i}

X{0,1,...,n} X{i,i+1}

σi

is 2-cartesian.

Lemma 2.9. Let
D′ C ′

D C
F

be a commutative square of groupoids, that is a cartesian square on underlying sets.
Assume that F is an isofibration.5 Then the square is 2-cartesian.

4The objects of a 2-pullback of groupoids can be constructed similar as the objects of the fiber product
of the objects, only that the condition in the fiber of being equal is replaced by the condition of being
isomorphic. We will mention below that we do not to worry about this.

5If a ∈ D and b ∈ C with ϕ : F (a) ! b, there exists an isomorphism ϕ̃ : a ! b̃ in D with F (ϕ̃) = ϕ.
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The Waldhausen S-construction

Sketch of proof of the theorem. First, note that

S{i,i+1,...,j} ! S{i,j}

is an isofibration, so we do not have to care about “higher coherences” for the moment.
Now the functor

S{0,...,n} ! S{0,1,...,i,j,...,n} ×S{i,j} S{i,i+1,...,j}

is given by removing objects in a diagram of Sn(E) whose indices correspond to diagonals
of Pn crossing the diagonal (i, j), who can again uniquely be filled in with pullbacks
and pushouts, and the resulting diagrams will again be bicartesian, because we have
pasting laws. Let us illustrate how this works for the triangulation of the square, were
we indicate the missing diagonal by drawing it bold:

0 1

3 2

So we are faced with solving a lifting problem of the form

0 a b c

0 a′ ?

0 a′′

0

This can be done as follows: First, we complete

b c

a′ b′

to a bicartesian square. Then, in the second step, we can use the universal property of b′

to get the desired morphism b′ ! a′′. Pasting for bicartesian squares ensures that

a′ b′

0 a′

is bicartesian too. To give a slightly more extravagant example, consider the case n = 5,
and the diagonal (i, j) in the regular 6-gon as pictured below, where again, the crossing
diagonals are indicated in bold:
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Waldhausen S-construction in relation to other concepts

34

5

0 1

2

This corresponds to adding the dots indicated in green and the missing morphisms in
the picture below:

(0 6 5)

(5 6 5)

(0 6 0)

(1 6 1)

(2 6 2)

(3 6 3)

(4 6 4)

�

Remark 2.10. This proof becomes more precise if we use that we only need to check
the 2-Segal condition for i = 0 or j = n ([DK19, Prop.2.3.2]). In that case, it suffices in
the i = 0 case to show that the maps

Mn ! Mj ×(2)
S{0,j}

Mn−j+1

induced by splitting up the filtration at the j-th point are equivalences. But this only
means that two sequences

{F (0, 1) ↪! . . . ↪! F (0, j)} ∈ Mj , {F ′(0, j) ↪! . . . ↪! F ′(0, n)} ∈ Mn−j+1

together with an isomorphism F (0, j)! F ′(0, j) combine to a canonical object of Mn,
which is ok. The condition for j = n can be shown similar, but now with E instead of M.

3 Waldhausen S-construction in relation to other concepts

Example 3.1. π1(S•(Mod(R)ω)) recovers the usual K0(R). Also, S•(Mod(R)ω) is not
1-Segal if there are non-split extensions, because the Segal map

S2 ! S1 × S1

maps the extension (a ↪! b � a′) to the pair (a, a′).
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Hall algebras

Let S• be a 2-Segal simplicial groupoid, with S0 = pt.

Proposition 3.2. Consider the groupoid S1. Then S1, together with the span µ

S{0,1,2}

S{0,1} × S{1,2} S{0,2}

as multiplication, is an algebra object in the span-category Span(Grpd).

Sketch of proof. The idea is that both compositions µ ◦ (µ ⊗ id) and (µ ⊗ id) ◦ µ can be
represented by the same cartesian diagram, which can be verified using one of the 2-Segal
maps. �

Let Spanf (Grpd) be the thick subcategory with morphisms given by spans G′ L
 − G

R
−!

G′′ such that π0L has finite fibers and R is locally finite, in the sense that its restriction
to every connected component has finite 2-fibers.

Proposition 3.3. If E is a finitary proto-exact category, then the Hall-algebra Hall(E)
is isomorphic to the opposite of the algebra F(S1(E)), where F is the monoidal functor
Spanf (Grpd) ! VecQ, that maps a groupoid G to the Q-linear space of functions
π0(G) ! Q that are constant on connected components, and non-zero for only finitely
many of them.
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